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HIGHLIGHTS
• Different aerogel-based materials are now used in thermal insulation 

systems for cryogenic applications:
• Flexible composite blankets, bulk-fill particles, and polymer composites

• Designed for vacuum and/or non-vacuum environments

• In ambient environments, aerogels provide superior thermal 
performance while offering unique advantages in solving problems 
with weathering, moisture, and mechanical damage

• Aerogels are also used in multilayer approaches:
• Layered composite insulation systems are providing combined structural-

thermal capability for cryogenic systems in both vacuum-jacketed and 
externally-applied designs

• Cryostat test data include a wide range of both commercial and 
experimental aerogel materials

• Examples of aerogel-based insulation systems are provided

04Sep2018J. FESMIRE

2



INTRODUCTION
• Are aerogels the answer to all insulation problems? Maybe. 

• What is the best insulation material? Aerogel blanket, of course; 
but this is a really poor *question. Three main limitations on the 
use of MLI systems are summarized as follows: 
1. High vacuum is required for operation (and in the first place, it is not 

possible to vacuum-jacket all hardware)

2. Not all hardware can be suitably wrapped or properly covered

3. Localized compression will ruin the thermal performance; MLI cannot 
withstand mechanical loading 

• Compared to the no load condition for six different MLI systems 
tested (average heat flux of 0.6 W/m2):
• A mere 0.7 kPa (0.1 psi) load will cause15x increase in heat flux

• A small 7-kPa (1 psi) load will cause an approximate 40x increase

• A modest 70-kPa (10 psi) load will cause a more than 100x increase 
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*The heat leak 
through the 
rendered system 
is what matters



INSULATION SYSTEM DESIGN
• For a given cryogenic application, how to choose among MLI, bulk-fill, 

foams, aerogels, aerogel blankets, polyimide-aerogels, aerogel-foam 
composites, layered composites, or some combination? 

• The design choice depends on four main factors:
1. Heat load requirement (What is the problem?); cryogen and temperature range

2. Physical design of system

3. Installation build process

4. Operational and maintenance requirements

• In ambient pressure applications, an alternative to closed-cell foam is the 
aerogel-based layered composite extreme (LCX) system: 
• LCX is “MLI for open-air” environments: unique benefits where complex shapes, 

weathering, moisture, and mechanical damage are problematic 

• Breathable (non-sealed) system proven at 20 K on LH2 systems: hydrophobic, nano-
porous characteristics of the aerogel material

• Aerogel blanket material Pyrogel® provides high temperature capability to 
923 K (1200 °F) where fire protection might be needed for cryofuel systems
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AEROGEL COMPOSITE 
BLANKET

Silica aerogel with fiber matrix 
reinforcement: Cryogel®, 
Spaceloft® and Pyrogel® by 
Aspen Aerogels, Inc.
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AEROGEL PARTICLES

Silica aerogel particles: P100, 
P200 and P300 by Cabot Corp.
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LAYERED COMPOSITE 
EXTREME (LCX)

Custom layered solutions for 
non-vacuum applications: MLI 
systems for the open-air 
environment by Xtremes LLC
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PHYSICAL PROPERTIES OF AEROGEL-BASED 
TEST SPECIMENS
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Notes: *As tested     ^Ultra-Low Density (ULD)

Cryostat Test 
Series

Test Specimen No. of 
Layers

Total Thickness* 
(mm)

Density* 
(kg/m3)

C100 A108 Bulk-fill aerogel beads 1 25 80

C100 A111 Pyrogel® aerogel blanket (black) 6 18 125

C100 A194 Cyrogel® aerogel blanket 2 20 130

C500 G2-109 Spaceloft® Subsea (grey) 4 20 152

C500 G1-190 ULD^ aerogel blanket white 8 23 55

C500 G2-113
ULD^ melamine flexible aerogel grey

8 21 65

C500 G1-191
ULD^ Aerogel MLI layered composite

8 23 52

C100 A193
Aerogel MLI layered composite (0.7-mm 
aerogel paper) 7 5 91



PHYSICAL PROPERTIES OF ADDITIONAL 
INSULATION TEST SPECIMENS FOR COMPARISON
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Note: *As tested  

Cryostat Test 
Series

Test Specimen No. of 
Layers

Total Thickness* 
(mm)

Density* 
(kg/m3)

C100 A114
Vacuum Only (black surfaces)

1 25 n/a

C500 G1-157
SOFI Foam BX-265

1 25 42

C100 A102
Glass Bubbles K1

1 25 65

C100 various
Kaganer Line (MLI Baseline); average of 
26 different MLI test specimens 10 - 80 ~22 typical ~50 typical



CRYOSTAT-100
Cylindrical boiloff calorimeter 
(absolute heat flow)

ASTM C1774, Annex A1
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o Boundary temp range: 78 K to 353 K

o Effective thermal conductivity (ke) and 
heat flux (q)

o 1-m tall by 167-mm dia. cold mass

o Specimen thickness from 0 - 50 mm

o Guard chambers top & bottom

MAIN FEATURES



CRYOSTAT-500
Flat Plate boiloff calorimeter 
(absolute heat flow)

ASTM C1774, Annex A3
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o Boundary temp range: 78 K to 403 K

o Effective thermal conductivity (ke) 
and heat flux (q)

o 204-mm diameter cold mass

o Specimen thickness from 2 - 40 mm

o Guarded test chamber

MAIN FEATURES



C500 TEST SPECIMEN PREPARATION

• Heating and evacuated according to standard 
laboratory procedures (typical):
• Heating to ~323 K in conjunction with evacuation and gaseous 

nitrogen purge cycles (a minimum of three times)

• Followed by at least 48 hours of continuous vacuum pumping

• Intermediate temperature sensors for determining the 
temperature dependence of thermal conductivity:
• Three Type E, 30 gage thermocouples are placed within the 

specimen at specific intervals through the thickness 

• Interlayer thermal conductivity values (λ) can be calculated 
and reported with the mean temperature (Tm) for each layer

• Up to 9 λ points can be calculated in addition to the ke for the full ΔT
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G2-109 Spaceloft Subsea (Grey) 
preparation showing temperature 
sensor installation



CRYOSTAT DATA FOR AEROGEL MATERIALS IN COMPARISON 
WITH A VARIETY OF OTHER CRYOGENIC INSULATION SYSTEMS

o Boiloff calorimetry
o Cryostat-100 (A-series)

o Cryostat-500 (G-series)

o Variation of ke with CVP
o Boundary temperatures: 293 

K / 78 K

o Residual gas: nitrogen

o Legend: (t, n, d) where:
o t = thickness (mm)

o n = number of layers

o d = bulk density (kg/m3)
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Cold Vacuum Pressure - CVP (millitorr)

A114 Vacuum Only

G1-157 SOFI Foam BX-265 (25, 1, 24)

A108 Aerogel Beads white (25, 1, 80)

A194 Cryogel Blanket (20, 2, 130)

A111 Pyrogel Blanket black (18, 6, 125)

G2-109 Spaceloft Subsea Grey (20, 4, 152)

G1-190 ULD Aerogel Blanket (23, 8, 55)

G2-113 ULD Melamine aerogel grey (21, 8, 62)

A102 Glass Bubbles K1 (25, 1, 65)

G1-191 ULD Aerogel MLI (23, 25, 52)

A193 Aerogel Paper MLI Composite (5, 7, 91)

Kaganer Line - ke (MLI Baseline)

Legend: (t, n, d) = (23, 8, 90) = 23 mm thickness, 8 layers, 90 kg/m3 bulk density
Boundary temperatures: 293 K and 78 K; Residual gas: nitrogen



CRYOSTAT DATA FOR AEROGEL MATERIALS

o Boiloff calorimetry
o Cryostat-100 (A-series)

o Cryostat-500 (G-series)

o Variation of ke with CVP
o Boundary temperatures: 293 

K / 78 K

o Residual gas: nitrogen

o Legend: (t, n, d) where:
o t = thickness (mm)

o n = number of layers

o d = bulk density (kg/m3)
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Cold Vacuum Pressure - CVP (millitorr)

A108 Aerogel Beads white (25, 1, 80)

A194 Cryogel Blanket (20, 2, 130)

A111 Pyrogel Blanket black (18, 6, 125)

G2-109 Spaceloft Subsea Grey (20, 4, 152)

G1-190 ULD Aerogel Blanket (23, 8, 55)

G2-113 ULD Melamine aerogel grey (21, 8, 62)

Legend: (t, n, d) = (23, 8, 90) = 23 mm thickness, 8 layers, 90 kg/m3 bulk density
Boundary temperatures: 293 K and 78 K; Residual gas: nitrogen



LAYER TEMPERATURE PROFILE: 
EXAMPLE FROM CRYOSTAT-500 TEST SERIES

o Layer temperature profiles for 

G1-190 ULD aerogel white for 

all cold vacuum pressures:

o From high vacuum (HV) to no 

vacuum (NV)

o Three interlayer temperature 

sensors as indicated by the line 

markers
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G1-190 HV (Test 1)

1 millitorr (Test 2)

10 millitorr (Test 3)

100 millitorr (Test 4)

1 torr (Test 5)

10 torr (Test 6)

100 torr (Test 7)

G1-190 NV (Test 8)

Cryostat-500 Insulation Test Apparatus
Boundary temperatures: 78 K and 293 K
Residual gas: nitrogen
G1-190: ULD aerogel white (8 layers), 23.0-mm



LAMBDA CALCULATIONS FOR 
TEMPERATURE DEPENDENCE

• Intermediate temperature sensors provide a way to determine the 
temperature dependence of thermal conductivity (λ):
• Within the two prescribed boundary temperatures, WBT and CBT

• The use of three intermediate temperature sensors creates four layers, 
numbered from one to four, from the cold side

• Basic nomenclature and equations:
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Q = ke * Ae * ∆T/∆x Fourier equation

q = Q/Ae constant (steady-state)

q = q1 = q2 = q3 = q4 = λ4 * ∆T4/∆x4 and so forth

Tm = (Tcolder + Twarmer)/2 or Tm4 = (Tc4 + Tw4)/2 and so forth



INTERMEDIATE THERMAL CONDUCTIVITIES CALCULATED 
FOR G1-190 ULD AEROGEL WHITE 

o Variation of lambda (λ) 

with mean temperature 

(Tm) for four different 

cold vacuum pressures

o ULD aerogel white

o Cryostat-500 test series 

G1-190
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Mean Temperature, Tm (K)

G1-190 ULD Aerogel Blanket: λas a function of Tm (calculated from layer temperature profiles for different CVP)

0.01 millitorr

1 millitorr

10 millitorr

100 millitorrLayer One (2.9-mm thick)
at 0 - 2.9-mm

Layer Two (2.9-mm thick)
at 2.9 - 5.8 mm

Layer Three 
(2.8-mm thick)

at 5.8 to 8.6 mm

Layers Four-Eight
(14.4-mm thick)
at 8.6 - 23.0 mm

Cryostat-500 Insulation Test Apparatus
204-mm diameter disk test specimen
23-mm total thickness
G1-190: Eight layers of ULD aerogel blanket white 



THERMAL PERFORMANCE ESTIMATES FOR 
DIFFERENT BOUNDARY TEMPERATURES

• Baseline heat flux (qbase) test data at the standard boundary 

temperatures of 293 K and 78 K

• Plus additional test data from the literature for MLI under high 
vacuum (<10-5 torr) with warmer or colder boundary 
temperatures

• Estimation of the thermal performance for a specific layered 
system design is calculated using a warm boundary 
temperature factor (bw) and a cold boundary temperature 
factor (bc):
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qdesign = bc * bw * qbase



BOUNDARY TEMPERATURE FACTORS
Increase in heat flux for increasing WBT (for MLI system with constant CBT = 78 K) 
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WBT (K) ∆T % increase, 
∆T

% increase, 
q

factor bw

293 215 baseline baseline 1.00

305 227 6 14 1.14

325 247 15 32 1.32

350 272 27 46 1.46

Decrease in heat flux for decreasing CBT (for MLI system with constant WBT = 300 K) 

CBT (K) ∆T % decrease, 
∆T

% 
decrease, q

factor bc

76 224 baseline baseline 1.00

40 260 16 14* 0.86

20 280 25 21 0.79

4 296 32 33 0.67

*Interpolated value



EXAMPLE: ESTIMATE OF HEAT FLUX

• For example, the heat flux estimate for a system operating at boundary 

temperatures of 325 K / 20 K is approximately the same thermal performance 

as the baseline of 293 K / 78 K:

qdesign=1.32*0.79*qbase = 1.04*qbase

• Heat flux is proportional to the ∆T (and T4 for the radiation portion), but the 

materials’ heat transmission characteristics are changing with lower 

temperatures, combined with possible improvement of the level of vacuum 
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LAUNCH EQUIPMENT TEST 
FACILITY

Space Launch System (SLS) 
cryogenic umbilical systems, 
LH2 piping and components
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CRYOFUEL UMBILICAL 
CONNECTION: LH2

Custom aerogel bulk-fill system 
(ground side) and LCX solution 
(flight side) successfully tested 
with multiple LH2 operations
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CRYOFUEL UMBILICAL 
CONNECTION: LO2

Custom LCX solution on LO2 
umbilical for Space Launch 
System (SLS) propellant loading 
system
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FUTURE UPPER STAGE 
LAUNCH VEHICLE 
INSULATION

Aerogel-based layered composite 
insulation system for LH2 tank
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• LCX variant under development to solve old 

problem of “external insulation” on 

cryogenic upper stages of launch vehicles 

for the keeping of liquid hydrogen (LH2)

• Enables function in all three wildly different 

environments: 

• Ground (moisture, liquid air formation)

• Flight (aerodynamic forces)

• Space (on-orbit, high-vacuum insulation)

• Lightweight, robust LCX addresses the triple 

problem in a synergetic approach 

• Cryogenic-vacuum testing shows ~50 times 

better performance (lower heat flux) in 

vacuum compared to state-of-the-art foam



CONCLUSION 

• Cryogenic-vacuum thermal performance of 
aerogel-based thermal insulation systems is 
provided for a variety of applications

• Field applications show unique thermo-
economic performance advantages of 
aerogel systems when looking at the total 
picture and the reality of installation on 
complex hardware 

• Aerogels include blanket composites, bulk-fill 
type, and layered systems with radiation 
shields

• Future aerogel materials under development 
can lead to further advances, enabling 
entirely new approaches and applications

• Different aerogel materials are commercially 
available today, proven in both vacuum 
and non-vacuum environments at 
temperatures from 4 K to 400 K

Aerogel-Based Insulation Materials 
for Cryogenic Applications
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THANK YOU
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for your attention

Questions?


